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The flow in a turbulent boundary layer after a change 
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The changes of surface stress in a deep boundary layer passing from a surface of 
one roughness to another of different roughness are described fairly accurately 
by theories that assume self-preserving development of the flow modifications. 
It has been shown that the dynamical conditions for self-preserving flow can be 
satisfied if the change in friction velocity is small and if log Zo/zo is large (I, is the 
depth of the modified flow and x, is the roughness length of the surface). In  this 
paper it is shown that, if the change of friction velocity is not small, the dynamical 
conditions can be satisfied to a good approximation over considerable fetches if 
log Zo/zo is large. The flow modification is then locally self-preserving, that is, the 
fields of mean velocity and turbulence are in a moving equilibrium but one which 
changes very slowly with fetch and depends on the ratio of the initial to the 
current friction velocity. In  the limit of a very large increase in friction velocity, 
the moving equilibrium is essentially that of a boundary layer developing in a 
non-turbulent free stream. Equations describing the flow development are 
derived for all changes of friction velocity, and the form of the velocity changes 
is discussed. For large increases of friction velocity, the depth of the modified 
layer is substantially less than would be expected from the theories of Elliott and 
of Panofsky & Townsend. 

1. Introduction 
The changes in a turbulent boundary layer that passes from one surface to 

another of different roughness have been the subject of several experimental and 
theoretical investigations in recent years. The theories of Elliott (1958) and of 
Panofsky & Townsend (1964), which describe the observational material fairly 
well, assume self-preserving development of the flow modification induced by the 
change of surface, and it has been shown (Townsend 1965a) that the develop- 
ment is consistent with the Reynolds equations for mean flow momentum and 
turbulent energy if (i) the change in friction velocity is small, and (ii) log Zo/zo is 
large (Z, is the depth of the modified flow and x ,  is the roughness length). In 
meteorological situations, the change of roughness may be so large that the first 
condition is not satisfied and then the validity of the predictions may be queried. 
If the flow takes place from a very smooth to a very rough surface, the modified 
flow will resemble that in a turbulent boundary layer growing on the rough 
surface with a free stream of constant velocity, and it seems likely to be self- 
preserving. For less violent changes of surface or for a change from a rough to 
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a smooth surface, the possibility of self-preserving development is not evident, 
but it will be shown that the development is almost self-preserving whatever 
the change of friction velocity. 

2. Self-preserving forms for the flow modification 
Consider a deep boundary layer, with zero longitudinal pressure gradient, 

flowing in the direction of the Ox axis. At x = 0, the surface roughness-length 
changes from its upstream value of z1 to the downstream value, 2,. The notation 
and co-ordinates are those used in the earlier work, i.e. 
ox 
21 

20 

is in the wind direction, 
is the roughness-length for x < 0, 
is the roughness-length for x > 0, 

$1 = l0gz1/z,, 

r = z/l, ,  
k 

dent of height with a kinematic value of u1 and the velocity distribution is 

is the Karman constant, nearly 0.41. 
Upstream of the change of roughness, the Reynolds stress is nearly indepen- 

is the mean velocity at height z for x < 0, 
is the mean velocity at  (x, z) ,  
is an approximation to the net displacement of the streamline through 

is the friction velocity for x < 0, 
is the surface stress for x > 0, 
are scales of velocity at fetch x, 
is a scale of length at fetch x, 

(x, z) ,  

Ul = (Ul /W 1% (z/z1), (2.1) 

where the suffix 1 indicates that the quantity refers to conditions upstream of 
the change of roughness. The suffix 0 refers to conditions downstream of the 
change of roughness but u, is used for the local velocity scale and not for the local 
friction velocity. 

In  the earlier paper (Townsend 1965a, to be called I), the velocity field U ( x ,  x )  
was defined using a distribution function V ( x ,  z )  and the equations, 

77 = ul+ V-u,6(z)/(kz), (2.2) 

J: k 
U1 

S ( Z )  = - - (log Zo/z1 - C,)-’ V(z’) dz’, 

where 1, is a measure of the depth of the region of modified flow, and U, is the 
upstream distribution of velocity. In  I, V and 6 were identified as the velocity 
change along a streamline of the mean flow distant z from the surface for negative 
x, and the net displacement of that streamline, but it waB not made clear that 
they are approximations that are good only in the outer part of the flow. The 
point is of importance for the extension of the self-preserving theory to flows 
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with large changes of roughness, and the following treatment may be clearer than 
the original in I. 

The actual streamline displacement in the flow, S,, is given by 

or, if S,/z is small (an assumption to be confirmed later), by 

S,U(z) = - / ; (U-ul)dz’  (2.6) 

with a fractional error of order 6J.z. Substituting for ( U  - U,) from equation (2.2), 

After an integration by parts and use of equation (2.3), we obtain 

where 

I [ 2”, : 3 [ 2, 

C,(Z) = -1” 0 V ( z / )  log z’ 10 d z ‘ / / ;  V(z’) dz’ 

z 
6, log---+- = 6 log--C,+C,(z) , 

and so, for ICo - C(z)I < logz/zl, 

(S,-S)/S, = {s/z-k~/~,-C~+C,(z)}/(logz/zl). (2.9) 

The distribution function must approach zero for large values of z/Z, and, for 
small values, it  must conform with the logarithmic distribution of velocity in 
the equilibrium layer, 

(2.10) 
The last is possible if 

(2.11) 

U = ( T $ / k )  log z/zo. 

V = (u,/E) [log zp,  + C] 

for small z/lo, where C is a constant of order one depending on the choice of I,. 
It is then easy to show that the logarithmic forms are consistent with the defining 
equations (2.2-4) only if 

I-$ = u1 + u,p+ {log (lo/zo) - M - C,)-l] (2.12) 

and U,/Ul = - M{log (Z0/zo) - c + 11-1, (2.13) 

where M = logzo/zl. The terms in the numerator on the right of (2.9) may now 
be estimated. Inside the equilibrium layer, the form (2.11) is valid and may be 
used to show that 

(2.14) 1 
C,(z) z -log zp0, 

s/x M 1M log z/l,[{log (Zo/Zo) - M)log l0 /x0] -1  

k V / U l  M - M(l0g z/Z,/log I,/ 2,. 

If z/Z, is very small, none of these is necessarily small compared with log z/xl and 
6 is not necessarily a good approximation to S,, but, near the outer edge of the 
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equilibrium layer and generally in the modified flow where z/I, is not too small, 

s / x  = O"((log(&J/x,) - M )  log 43/~0}-11, (2.15) 1 Q,(x) = O(l ) ,  

kV/Ul = O[Jf/log (lo/xo)l. 

For positive M ,  the matching relation (2.13) shows that uo is negative and it may 
not exceed u1 in magnitude if the surface stress remains positive. Then log Zo/zo 
is greater than M and the three terms of the numerator are all small compared 
with log x/xl = log ( x / I o )  +log ( Io /xo)  - M if log Io/xo is large and x / I ,  is not too 
small. For negative M ,  log x / x l  is certainly more than - M ,  and we reach the same 
conclusion. It follows that (8, - 6)/8, is of order log Io/zo or smaller in the outer 
part of the modified flow, whatever the value of the change-of-roughness para- 
meter M .  6 defined by (2.3) is therefore a good approximation to the actual dis- 
placement of the streamlines and is always moderately small compared with x .  
Then equation (2.2) shows that V differs from the true change of velocity along 
the streamline by an amount of order uo/k(logIo/xl)-2, and mean flow accelera- 
tions in the outer flow can be found using V.  In  the equilibrium layer, where x / l ,  
may be very small, 6 is not a good approximation to the streamline displacement 
and V is not a good approximation to the velocity change, but here the nature of 
the flow is determined by the local surface stress and is substantially unaffected 
by the flow acceleration. In  this region, V and 6 are merely convenient functions 
for describing the flow, convenient because they approximate closely to the 
velocity change and the streamline displacement where the flow acceleration 
matters, outside the equilibrium layer. It may be mentioned that the expressions 
for the added momentum flux in 3 3 of I do not depend a t  all on the correspond- 
ence between V and 6 and the velocity change and streamline displacement. 

We now introduce the self-preserving form for the change of velocity, 

= ( u O / l c ) f ( x / z O ) ,  (2.16) 

where u,, I ,  are functions of x only. For self-preserving development, all the mean 
values that describe the flow modification must be expressible in similar self- 
preserving forms with the same length-scale I,. The stress modification should 
have the form, 

r - ut = (7, - u:) B'(z/I,), (2.17) 

where F(x/Io) approaches one for small z/Z, and is zero for large values of z/Zo. 
Other quantities are the turbulent energy -@, the divergence of the transverse 
flux of turbulent energy a(j33+ $Fw)/ax, and the rate of dissipation of turbulent 
energy by viscosity 8. 

(2.18) 

6 - u:/(kx) = ((7: - u:)/kz} E(Z /ZJ ,  I 
in which. the scales have been chosen so that the values appropriate to an equi- 
librium layer can be assumed for small values of x / I o .  



Flow after a change of surface roughness 259 

3. Possibility of self-preserving development 
The basis of self-preserving development is a moving equilibrium in which the 

various processes of turbulent transport and eddy interactions combine to 
produce flow structures which at all stages are similar in form. The exact forms 
depend on the dynamics of the flow which is partially described by the Reynolds 
equation for the mean flow momentum, 

and by the Reynolds equation for the turbulent kinetic energy, 

Consider first the result of substituting the self-preserving forms for the velocity 
change and the stress change, (2.16) and (2.17), in the momentum equation. The 
purpose is to assess the possibility of self-preserving development and so there 
is no need to consider the flow for small values of z/Zo. This part of the %ow is an 
equilibrium layer where production and dissipation of turbulent energy are so 
intense that mean velocity is described by the logarithmic 'law of the wall', and 
fulfilment of the matching conditions (2.11), (2.12), (2.13) is enough to make 
self-preserving flow a dynamical possibility. Outside the equilibrium layer, the 
adjustment time of the turbulent motion is appreciable and advection of 
momentum and energy have an effect in the outer region which occupies perhaps 
four-fifths of the whole region of modified flow. Supposing log Zo/zo to be large, the 
velocity change V is small compared with the local velocity and terms quadratic 
in V may be omitted. The result of the substitution is then 

(3.1) 

where r ]  = z/Z, and primes denote differentiation with respect to 7. From equation 
(2.13), the ratio of duo/dx to uo/Zodlo/dx is 

_ _  duo = - (log zo/zo - c + 1)-1 
u, ax 

which is smali, and logz/zl is much larger than one in the outer region. To the 
approximation of large log Zo/zo, the momentum equation is 

- (logZo/~,-M)ulu,(dZ,/dx)r]ff = k2(r0-u:) F' (3.2) 

and, after using the relations (2.12) and (2.13), it  is 

(3.3) 

17-2 
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If self-preserving development is consistent with the momentum equation, 
the coefficient of qf in (3.3) must be independent of x. Integration over all 7 gives 

where 

= 7c2/Il, 
dZ, (log z,/x, - M )  (log zo/xo - c + 1) ___ 
dx 2(10g Zo/z0 - C + 1) - M (3.4) 

since F(0)  = 1 by definition. If lo satisfies this development equation, the 
momentum equation reduces to the non-dimensional, self-preserving form 

qf’ = -1,F’ (3.5) 

and it might appear that self-preserving development is possible if log Zo/zo is 
large without qualification on the change in friction velocity. For very large 
negative values of M ,  the stress ratio ro/uT is large and the flow over the rougher 
downstream surface must resemble closely a turbulent boundary layer initiated 
at  x = 0 with a free-stream velocity equal to the current value of Ul(Zo). The 
nature of flow with an almost non-turbulent ambient flow is very different from 
the perturbation type flow for small values of M ,  and the boundary-layer flow 
must have different distribution functions from the perturbation flow. In these 
circumstances, it is not surprising that the question of self-preserving develop- 
ment for moderate values of uo/u, is not simple. 

In  a turbulent flow, the mean flow and the turbulent motion interact, the 
Reynolds stresses accelerating the mean flow and the turbulent motion deriving 
its energy from the working of the mean flow against the Reynolds stresses. The 
Reynolds momentum equation describes the first of the processes and it has now 
been shown that a self-preserving velocity change is consistent with a self- 
preserving change of Reynolds stresses. To show that the self-preserving stress 
change can arise from the interaction between the mean flow and the turbulence, 
it is necessary to look at the energy equation. With the self-preserving distribu- 
tions of (2.18) and to the approximation of large log lo/zo, the energy equation is 

For this to reduce to a self-preserving form, the various coefficients must either 
be negligible or maintain constant ratios with variation of x. For values of uo/ul 
that are neither small nor very large, the ratios of rt-u;, u l ( ro-u~)  and 
u0(7,,-u3 must remain constant, possible only if uo/ul is invariant, which is 
inconsistent with variation of I ,  and equation (3.13). It appears then that self- 
preserving development is possible only if 

(A) luo/ull is small with ro-uf = 2u,u, and uz = uFuo, 
or (B) u, $- u1 with ro = u: and ud = u,. 
The perturbation flows fall in group A and the boundary-layer type flow in 
group B (see figure 1). 
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While only the two extreme kinds of flow can remain strictly self-preserving 
over large ranges of x, flows with moderate values of uo/ul can satisfy the criterion 
for self-preserving development over fetches long enough for the flow to attain 
a moving equilibrium. The reason is that the downstream variation of u, is very 
slow if logZo/xo is large. For example, with loglo/zo about ten, uo decreases by 
about one-fifth while I, (and x) increases by a factor of ten. The ‘settling-down’ 

Shear stress 

Boundary-layer-type flow I 
IVI 

I 
7 0  >> .: 

0 
Mean velocity V 

Shear stress 

Perturbation-type flow / 
/ Yl 

IT0 -.:I <<u: 

/ 

Mean velocity V 

FIGURE 1. Velocity and stress distributions for a boundary-layer type flow and for 
a perturbation-type flow. (The distributions are schematic.) 

time of a turbulent flow is comparable with the turbulent energy divided by the 
rate of energy dissipation which is about Zo/ul. In  this time, the parcel of turbu- 
lence is swept a distance of about l,/kloglo/zl, which, by equation (3.4) is com- 
parable with x. It is therefore likely that the turbulent flow is always near the 
moving equilibrium appropriate to the current value of uo/ul and that the flow is 
locally self-preserving. Over extensive ranges of x, the nature of the moving 
equilibrium changes and with it the form of the distribution functions, but they 
change so slowly that, a t  least to the first order, the variation can be neglected. 
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4. Development of the modified flow 
In  the previous section it was argued that the development is very nearly self- 

preserving although the forms of the distribution functions depend on the value 
of uo/ul and are not strictly invariant during development. Then the modifica- 
tions of mean velocity and Reynolds stress are described by the downstream 
variation of the scale length Z, and by the form of the velocity distribution func- 
tionf(7). To a first-order approximation, the downstream variation of I, may be 
found by integrating the development equation (3.4), using the value of Il appro- 
priate to the current value of u,/ul. However, we have not yet defined I ,  precisely 
and are free to choose it so that Il = 1 for all values of uo/ul, i.e. to put 

with an obvious gain of convenience. Neglecting terms of order (log Zo/z0)-l, I ,  is 
related to x by 

= k2(x - x,), (4.3) log l,/z,(h3 zo/zo - M )  
2 log zo/zo - M 

where xo is an effective origin of the modified flow. 
For the purpose of predicting flow changes when logl,/z, is only moderately 

large, it is desirable to have a better approximation for I ,  than equation (4.2). If 
Px is the additional momentum flux in the modified flow, overall conservation of 
momentum requires that dP,/dx = uI - 7,. 

Omitting terms of order Mu~Z,(logZ,/~,)-2, it  can be shown (see Townsend 1965a) 
that 

Px = ~(logzo/zl-co)Jow k vdz+J-om (V(z))”z 

and so, substituting V = (u,/k)f(z/Zo), 

where 

+ (4.3) 

The quantities C, C, and I2 depend on the current value of uo/ul and, to some 
extent, on the current value of log Zo/zo, but they do not affect the leading terms 
of Px and the effect of their variations on the magnitude of dPx/dx is of order 
Mu:(dZ,/dx) (log Z, /Z , ) -~ .  Then 

(4.4) 
log Zo/z0 - M - C, 
log Zo/zo - C + 1 + (log Zo/zo - C + 1)2 

From (2.6), 
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and we obtain the development equation, 

(1% (Zolxo) - c+ l}{log (loizo) - M - C,} + M (  1 +I,, 
2Qog (Zo/Zo) - c+ 1) - 1M dx 
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which may be integrated to 

] (4.5) 
-I+-- iM2 
, (210g(Z0/z,)-M)2 

k 2 ( X - X o )  - - ~ ~ o g ( ~ o / ~ o ) - ~ +  l } { l o g ( ~ o l ~ o ) - M - C o } + M ( ~ + ~ , ) -  
(4.6) 

10 2(log ( Zo/Zo) - c + l} - M 

The omitted terms are less in a ratio of order (log Z,/Z,)-~ than those retained, 

small ratios of the friction velocities, it  becomes (compare Townsend 1965b) 
In  the two limiting flows, the development equation takes simple forms. For 

k2(x  - xo)/Z0 = *(log (Zo/x0) - *M - C,- 2} 

k2(X - X,)/Zo = log ( Zo/Zo) - c - 1 - I, + (log Z0/x,)2/M. 

(4.7) 

valid for /MI < log Zo/xo, while for large positive ratios, i.e. - M B log Zo/xo, it  is 

(4-8) 

As defined, the depth of the modified layer is seen to be nearly twice as large at 
a given fetch in the perturbation flow as in the boundary-layer type flow. This 

Velocity profile C co I2 4 l i l O  
Boundary layer - 0.60 1.5 2.9 0.55 
Elliott 0 2 2 0.90 
Panofsky-Townsend 0-31 1.81 1.67 1.22 

TABLE 1. Characteristics of velocity distribution functions 

conclusion takes no account of possible changes in shape of the velocity distribu- 
tion function f(q), whose form is known with confidence only for the boundary 
layer. Some measurements are collected in Townsend (1956) and, in terms of the 
scale thickness used there, 6 = z,exp (kUl/uo) in the present notation, 

Il = 0*556/Z0 = 1. 

Figure 2 shows the form of the velocity distribution function and it can be seen 
that the Iimit of observable velocity change lies near x = 0.551,. The values of the 
parameters, C, C, and I,, are given in table 1. 

Observations of the velocity changes have been made by several workers 
(Lettau et al. 1962; Rider, Philip & Bradley 1963; Bradley 1965) in the atmo- 
spheric boundary layer, mostly for moderate values of uo/ul near 0.7. The 
accuracy of the observations is hardly sufficient to do more than indicate the 
general form off (7) and the following reasoning may be as good a guide to the 
form as the observations. An essential difference between the perturbation flows 
with small uo/ul and the boundary-layer flows is that, in the first kind, the 
ambient flow is already turbulent and able to convect turbulent energy in the 
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loge 
( b )  

FIGURE 2. Comparison of profile shapes as observed in boundary layers and as postulated 
by Elliott and by Panofsky & Townsend, ( a )  with a linear height scale, and ( b )  with a 
logarithmic height scale. -, Boundary-layer profile; --, Elliott (logarithmic) profile; 
-___ , Panofsky-Townsend (log-linear) profile. 
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lateral direction. The other processes represented in the energy equation, produc- 
tion, dissipation and advection of turbulent energy, are qualitatively similar in 
both kinds of flow and it may be expected that the change in form of the velocity 
distribution function is, for the most part, a response to the change of magnitude 
of lateral convection of turbulent energy. Common sense, reinforced perhaps by 
theoretical models of the kind used to discuss the perturbation flow (Townsend 
1965a), is enough to show that added lateral convection leads to a relatively 
increased spread of the flow modification, and so that the depth of the modified 
region, expressed as a fraction of Z,, becomes less as uo/ul increases. For small 
values of uo/ul, it is likely that the distribution function is close to the logarithmic 
form, proposed by Elliott (1958), 

f(7) = log7 for 7 < 1 
= 0 for 7 > 1, 

although the Panofsky & Townsend (1964) form, 

f(7) = log*7+(1-+y) for 7 < 2 
= o  for 7 > 2. 

is possible. Table 1 gives values of C, C, and I2 for these profiles, and also the 
total effective thickness of the modified layer am, defined as the height at which 
the velocity change is &uo. 

In  view of the uncertainty in the basic velocity distribution, it may be useful 
to have a summary of the consequent uncertainty in prediction of stress and 
depth of the modified layer. The following estimates refer to fetches such that 
log Zo/(zlzo)* = log Zo/zo - &M is near six. 

(i) For a given log Zo/(zlzo)~, the predicted scale height I ,  varies over a range of 
6 yo depending on the assumed profile. 

(ii) The effective depth of the modified layer, i.e. 8, as defined above, is about 
one-half of 1, for large negative M ,  but may be nearly equal to I, for small or 
positive values of M .  

(iii) The fractional increase in friction velocity, uo/ul, depends on the assumed 
profile and has a consequent uncertainty of about 10 %. 

5. Concluding remarks 
The conclusion to be drawn from the analysis is that the flow modification 

induced by a change of roughness can be self-preserving in form over fetches 
long compared with the adjustment length of the flow. For changes of friction 
velocity that are not small, the dynamics of the self-preserving flow change 
slowly with fetch and cause slow changes in the distribution functions for 
velocity and stress, but the flow will always be very near the hypothetical self- 
preserving state appropriate to the current value of the stress-ratio if the change 
of flow velocity is small over most of the modified layer. The condition for this is 
that both log Zo/zo and log Zo/zl are moderately large. Since measurements are 
usually made at heights greater than the physical height of the roughness 
elements (which are perhaps twenty times as large as the roughness length), the 
condition is satisfied for any value of M ,  the change of roughness parameter. 
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The predictions are to some extent dependent on the forms of the distribution 
functions, but the available observations are not of sufficient accuracy to 
determine the variation of form with stress-ratio. 
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